Tooling device protection

  • 04-Jun-2010 02:33 EDT
#5717 BirchwoodCasey_TruTemp.jpg

Birchwood Casey’s Tru Temp low-temperature black oxide process protects tooling and fixtures used in all types of manufacturing. In storage, shipment, and start-up, the finish serves as a protective barrier against corrosion and provides break-in lubricity and anti-galling protection. It complies with MIL-DTL-13924, Class 1 and withstands 100-300 h of salt spray. The process is suited for components manufactured to tight tolerances, yet it does not affect function. The finish serves as a direct replacement for zinc phosphate finishes, without the hazardous zinc content. Total process time is 25 min, and operating cost is 2 to 3 cents per pound of finished work. The process operates at 200°F, eliminating the severe splattering and boilover hazards often experienced with conventional hot (290°F) black oxide finishing. Also, its mild solutions prevent red coatings and white salt leaching that often plague ordinary black oxide finishes.

HTML for Linking to Page
Page URL
Rate It
0.00 Avg. Rating

Read More Articles On

Thermal imaging data obtained from a FLIR high-performance camera shows that the expected turbine output temperature is approximately 285°C when the helicopter is in forward flight. However, during hover operations a steady state temperature of about 343°C will be reached.
Boeing and Airbus forecast a worldwide demand for up to 40,000 new aircraft over the next two decades. With a 10-year production backlog and new aircrafts increasingly counting on lightweight composites, manufacturing companies are developing advanced sandwich-structure composite solutions to fill the production gap.
The Michigan-based product developer is the first service supplier in North America to install the Concept Laser Xline 2000R, the largest powderbed metal additive manufacturing system of its kind.

Related Items

Training / Education
Training / Education
Training / Education
Training / Education
Training / Education
Training / Education