First Airbus A350-1000 wing goes into production in North Wales

  • 27-Aug-2015 12:21 EDT
A350-1000_wing_cover_goes_into_production_-_view_from_below.jpg

Wings for the first A350-1000 jetliner are now under assembly process at Airbus’ Broughton, North Wales facility.

Airbus has begun the assembly process on the wings for the first Airbus A350-1000 in Broughton, North Wales. The A350-1000 wing has the same span of the A350-900 that is already in service, but 90% of the parts have been modified and the trailing edge has been extended to resize the wing for the additional payload and range.

Most of the A350 XWB's wing is comprised of carbon-fiber composites, including its upper and lower covers. At 32 x 6 m, Airbus says the wing is the largest single part made from composites in use in civil aviation today.

The wings were designed and developed at Airbus’ facility in Filton, near Bristol, where a number of other systems are designed and tested including fuel systems and landing gear. The wing design includes several streamlined features, in particular droop-nose leading edge devices and new adaptive dropped-hinge flaps, which increase the jetliner’s efficiency at low speeds. Also, the wings are capable of producing more lift and automatically handle loads across their surface—helping to reduce the aircraft's drag and fuel burn.

On the A350 XWB wing, Airbus engineers combined aerodynamic enhancements already validated on the A380 with further improvements. To improve efficiency at higher speeds, the A350 XWB can deflect its wing flaps differentially, optimizing the wing profile and providing better load control. By intelligently controlling the wing’s moving surfaces using onboard computer systems, the wing will adapt while airborne—tailoring it for maximum aerodynamic efficiency in the various phases of flight. In essence, pilots will be able to use the flaps not only for takeoff and landing, but also while cruising to reduce wing drag.

Author:
Sector:
Topic:
Mentions:
Share
HTML for Linking to Page
Page URL
Grade
Rate It
4.44 Avg. Rating

Read More Articles On

2017-02-20
Researchers from Purdue University are studying the fundamental mechanisms behind a method that uses electrical fields to enhance ceramics-sintering processing, which could aid R&D of rechargeable lithium-ion batteries and fuel cells. The research also could shed light on a phenomenon called electromigration, which can affect the performance of electronic devices.
2016-12-20
Industrial aluminum slabs are typically produced by blending small amounts of copper or manganese in a reservoir of molten aluminum that is rapidly cooled, a process known as direct-chill casting. Variations in the way these elements solidify can yield uneven results that weaken the final product.
2017-05-05
Improvements to Airbus A320 passenger air nozzles could potentially contribute to program-wide benefits.
2017-05-05
NASA has selected proposals for the creation of two multi-disciplinary, university-led Space Technology Research Institutes (STRIs) that will focus on the development of technologies critical to extending human presence deeper into our solar system. The new STRIs will bring together researchers from various disciplines and organizations to collaborate on the advancement of cutting-edge technologies in bio-manufacturing and space infrastructure.

Related Items

Training / Education
2017-10-31
Training / Education
2013-04-09
Training / Education
2013-04-09
Training / Education
2017-11-01
Training / Education
2013-04-09
Technical Paper / Journal Article
2013-04-08
Training / Education
2017-10-19
Training / Education
2013-04-09