Aftertreatment system

  • 03-Feb-2015 08:53 EST
CONVERGE_Urea-Water_Spray.jpg

To achieve Tier and Euro emissions compliance with minimal impact on efficiency, system size, and maintenance, Convergent Science has developed an aftertreatment simulation approach for on- and off-road urea/selective catalytic reduction (SCR) systems that combines spray, wall-interaction, chemistry, and heat transfer models with automatic meshing. Built for in-cylinder simulations, the approach is suited for urea/SCR systems with transient sprays that impact mixers, potentially producing liquid films resulting in solid urea deposits. Convergent’s approach gives designers the flexibility to change geometry and exhaust system layout to improve performance. The use of computer simulation and code reduces aftertreatment system design time; in-cylinder combustion modeling timeframes are shortened by replacing user-defined meshing with the automated mesh generation process.

For more information, visit Booth 745 at SAE 2015 World Congress.

Share
HTML for Linking to Page
Page URL
Grade
Rate It
2.67 Avg. Rating

Read More Articles On

2016-11-15
Freudenberg Sealing Technologies has expanded its LESS (Low Emission Sealing Solution) lineup to include new products designed to address challenges associated with powertrain friction, smaller spaces, lighter weight vehicles and growth in the electric mobility vehicle arena.
2016-11-15
At least for this moment, all is right with the world as Mercedes-Benz reinstates a new-age version of its iconic inline six-cylinder engine.
2016-11-15
Tanktwo, a Finland-based startup company is rethinking the basic battery cell and challenging the fundamental economics and operational assumptions of EVs. The ingenious concept is worth engineers' attention.
2016-11-14
Conti’s 48-V system will be standard equipment on both gasoline and diesel versions of the Scenic Hybrid Assist model. It is the first of multiple 48-V production announcements coming over the next few years.

Related Items

Article
2016-11-15
Article
2016-12-02