Aerojet Rocketdyne to provide power, propulsion for 2020 Mars rover mission

  • 24-Oct-2014 09:39 EDT

A technician oversees the removal of a ventilated cage over the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) that is used to generate electricity for Curiosity on Mars. (NASA)

NASA's Jet Propulsion Laboratory awarded a contract to Aerojet Rocketdyne to supply the thrusters that would help land the next rover on Mars after it is launched in 2020.

Under a contract from the U.S. Department of Energy, Aerojet Rocketdyne also would supply the power source that would enable the rover to move around and conduct experiments on the Red Planet. The next rover is expected to carry more sophisticated, upgraded hardware, and new instruments to conduct geological assessments of the rover's landing site and also to determine potential habitability while searching for signs of ancient Martian life.

For the 2020 mission, Aerojet Rocketdyne will provide eight MR-80B 700-7 lbf thrusters and eight MR-107U 68 lbf thrusters, which would assist with the entry, descent, and landing of the rover on Mars.

These same thrusters were used to help successfully land Curiosity in 2012. The baseline electrical power system for the rover features a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), which was designed and developed by Aerojet Rocketdyne with Teledyne Energy Systems, in partnership with the U.S. Department of Energy.

The MMRTG, which is powering Curiosity, is designed to operate in a range of harsh environments, from the vacuum of deep space to extreme planetary surface atmospheres. It continuously provides both heat and electrical power to the rover to allow day and night operations. The heat is used to provide thermal stability for Curiosity's onboard electronics and mechanical systems.

HTML for Linking to Page
Page URL
Rate It
3.50 Avg. Rating

Read More Articles On

SAE International is working with the joint-venture initiative looking to deploy a high-powered DC fast-charging network for battery electric vehicles (BEVs) covering long-distance travel routes in Europe.
Fuel efficiency—and the economic and ecological benefits associated with it—continues to be the white rabbit of the global aviation industry. While engine builders look toward composites and electrification, and airframe designers toward lightweighting and aerodynamics, engineers at NASA’s Glenn Research Center recently completed testing of a novel concept: the boundary layer ingesting propulsor.
S.S. White Technologies is supplying flexible rotary shafts for the Honeywell Aerospace Air Turbine Starter on the next-gen GE Aviation GE9X high-bypass turbofan engines.
There is a general consensus among experts that it will take vast advances in materials technology to meet future efficiency and emissions requirements that can truly only be speculated about today.

Related Items

Training / Education
Technical Paper / Journal Article
Technical Paper / Journal Article
Training / Education