Toyota tilting three-wheeler enters the 'real world'

  • 24-Mar-2014 01:50 EDT

"Real-world" evaluation of the i-Road begins today in Tokyo.

Confined to private road courses to date, Toyota's tilting three-wheeler takes to regular roads beginning today (March 24). Ten units of the single-seat i-Road are undergoing a roughly eight-week public trial in Tokyo for evaluation of the vehicle's suitability for city driving and of its impact on how users decide what journeys to make with it. A longer-term evaluation is slated to being in the city of Grenoble, France, sometime this year. The i-Road has two wheels in front and one in the back. Propulsion is via two electric motors powered by a lithium-ion battery that on a single charge gives it a range of 30 mi (48 km) at a steady 19 mph (30 km/h). Maximum speed is 37 mph (60 km/h). Minimum turning radius is 3.0 m (9.8 ft) and wheelbase is 1695 mm (66.7 in). Curb weight is 300 kg (661 lb). Click here to read a previous Automotive Engineering article on the i-Road.

HTML for Linking to Page
Page URL
Rate It
4.50 Avg. Rating

Read More Articles On

The technology uses multiple foils with multiple messages and an LED light source. Each specific message is burned onto the holographic film through a photographic process.
Designers are envisioning new looks for vehicle interiors, as in-vehicle connectivity and electrified powertrains usher in the autonomous driving age. As more EVs enter the marketplace with battery packs housed underneath the cabin floor, the door opens to a new era of interiors.
A power swivel seat and a shape-shifting instrument panel are transformative technologies being developed for autonomous vehicle interior environments.
Statistics may point to human fallibility being the cause of almost all road accidents, but the switch to a connected robotic environment must ultimately deliver every nano-second of every day on the promise of a guaranteed near-total safety highway environment. Today’s grudging acceptance by the global public of the inevitability of deaths and injuries on the road will not continue in a driverless environment.

Related Items

Training / Education
Technical Paper / Journal Article
Training / Education